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The equation which governs the temporal evolution of a gravitational wave (GW) in curved space-time

can be treated as the Schrödinger equation for a particle moving in the presence of an effective potential.

When GWs propagate in an expanding universe with constant effective potential, there is a critical value

ðkcÞ of the comoving wave number which discriminates the metric perturbations into oscillating ðk > kcÞ
and nonoscillating ðk < kcÞ modes. As a consequence, if the nonoscillatory modes are outside the horizon

they do not freeze out. The effective potential is reduced to a nonvanishing constant in a cosmological

model which is driven by a two-component fluid, consisting of radiation (dominant) and cosmic strings

(subdominant). It is known that the cosmological evolution gradually results in the scaling of a cosmic-

string network and, therefore, after some time ð��Þ the Universe becomes radiation dominated. The

evolution of the nonoscillatory GW modes during �� (while they were outside the horizon), results in the

distortion of the GW power spectrum from what it is anticipated in a pure radiation model, at present-time

frequencies in the range 10�16 Hz< f & 105 Hz.
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I. INTRODUCTION

The so-called cosmological gravitational waves (CGW)
represent small-scale perturbations to the Universe metric
tensor [1]. Since gravity is the weakest of the four known
forces, these metric corrections decouple from the rest of
the Universe at very early times, presumably at the Planck
epoch [2]. Their subsequent propagation is governed by the
space-time curvature, encapsulating in the field equations
the inherent coupling between relic GWs and the Universe
matter content; the latter being responsible for the back-
ground gravitational field [3].

In this context, we consider the coupling between CGWs
and cosmic strings. They are one-dimensional objects that
can be formed as linear defects at a symmetry-breaking
phase transition [4,5]. If they exist, they may help us to
explain some of the large-scale structures seen in the
Universe today, such as gravitational lenses [6]. They
may also serve as seeds for density perturbations [7,8], as
well as potential sources of relic gravitational radiation [9].

In the present article we explore another possibility: A
fluid of cosmic strings could be responsible for the con-
stancy of the effective potential in the equation which
drives the temporal evolution of a CGW in an expanding
universe. As we find out, a constant effective potential
leads to a critical comoving wave number ðkcÞ, which
discriminates the metric fluctuations into oscillating modes
ðk > kcÞ and nonoscillatory ðk < kcÞ ones. As long as the
latter lie outside the horizon, they do not freeze out,
resulting in the departure of the inflationary-GW power
spectrum from scale invariance. This would be the case, if
there is a short period after inflation where the cosmologi-

cal fluid is made out of radiation and a subdominant
component of cosmic strings. As regards the space-time
geometry itself, the spatially flat Friedmann-Robertson-
Walker (FRW) model appears to interpret adequately
both the observational data related to the known thermal
history of the Universe and the theoretical approach to
cosmic-string configurations [4]. Consequently, we will
assume our cosmological background to be a spatially
flat FRW model.
This paper is organized as follows: In Sec. II we sum-

marize the theory of CGWs in curved space-time. In
Sec. III we demonstrate that, in a radiation model contami-
nated by a fraction of cosmic strings, the effective potential
in the equation which governs the temporal evolution of a
CGW in curved space-time is constant. In Sec. IV we
explore the characteristics of a potential contribution of
cosmic strings to the evolution of the Universe and in
Sec. V we study the propagation of the nonoscillatory
GW modes during this stage. We find that, if the
Universe evolution includes a radiation-plus-strings stage,
then, although it could last only for a short period of time,
its presence would lead to a distortion of the stochastic GW
background from what it is anticipated in a pure radiation
model, at present-time frequencies in the range
10�16 Hz< f & 105 Hz.

II. GRAVITATIONALWAVES IN CURVED
SPACE-TIME

The far-field propagation of a weak CGW ðjh��j � 1Þ
in a curved, nonvacuum space-time is determined by the
differential equations [10]
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h;���;� � 2R����h
�� ¼ 0 (1)

under the gauge choice

ðh�� � 1
2g

��h��Þ;� ¼ 0 (2)

which brings the linearized Einstein equations into the
form (1). In Eqs. (1) and (2), Greek indices refer to the
four-dimensional space-time, R���� is the Riemann cur-

vature tensor of the background metric, h�� is the trace of
h�� and the semicolon denotes the covariant derivative.

In the system of units where c ¼ 1, a linearly-polarized,
plane GW propagating in a spatially flat FRW cosmologi-
cal model, is defined as [9]

ds2 ¼ R2ð�Þ½d�2 � ð�ij þ hijÞdxidxj� (3)

where � is the conformal-time coordinate, Latin indices
refer to the three-dimensional spatial section, and �ij is the

Kronecker symbol. The dimensionless scale factor Rð�Þ is
a solution to the Friedmann equation�

R0

R2

�
2 ¼ 8�G

3
�ð�Þ (4)

(where, the prime denotes differentiation with respect to �
and G is Newton’s constant), with matter content in the
form of a perfect fluid, T�� ¼ diagð�;�p;�p;�pÞ,
which obeys the conservation law

�0 þ 3
R0

R
ð�þ pÞ ¼ 0 (5)

and the equation of state

p ¼
�
m

3
� 1

�
� (6)

where �ð�Þ and pð�Þ represent the mass density and the
pressure, respectively.

The linear equation of state (6) covers most of the matter
components considered to drive the evolution of the
Universe [11–13], such as a quantum vacuum ðm ¼ 0Þ, a
network of domain walls ðm ¼ 1Þ, a gas of cosmic strings
ðm ¼ 2Þ, dust ðm ¼ 3Þ, radiation ðm ¼ 4Þ, and Zel’dovich
ultrastiff matter ðm ¼ 6Þ. For each component, the con-
tinuity Eq. (5) yields

� ¼ Mm

Rm (7)

where Mm is an integration constant, associated to the
initial mass density of the mth component. Provided that
the various components do not interact with each other, a
mixture of them obeys [11]

� ¼ X
m

Mm

Rm (8)

where, now, Eq. (5) holds for each matter constituent
separately.

In the case of a one component fluid, the Friedmann
Eq. (4) reads

Rðm=2Þ�2R0 ¼
�
8�G

3
Mm

�
1=2

(9)

and, for every type of matter content other than cosmic
strings ðm � 2Þ, it results in

Rð	Þ ¼
�
	

	m

�
2=ðm�2Þ

(10)

where, the time parameter 	 is linearly related to the
corresponding conformal one, by 	 ¼ m�2

2 � and we have

set 	m ¼ ð8�G3 MmÞ�1=2. Notice that, for m ¼ 0 (de Sitter

inflation) and 0< �<1, we obtain �1<	< 0.
The general solution to Eq. (1) in the curved space-time

(3) is a linear superposition of plane-wave modes

hijð�; ~xÞ ¼ hkð�Þ
Rð�Þ "ije

{kjx
j

(11)

where hkð�Þ is the time-dependent part of the mode de-
noted by k and "ij is the polarization tensor, depending

only on the direction of the comoving wave vector kj.

Accordingly, for a fixed wave number k2 ¼ P
k2j , the

time-dependent part of the corresponding GW mode sat-
isfies the second-order differential equation [14,15]

h00k ð�Þ þ
�
k2 � R00

R

�
hkð�Þ ¼ 0: (12)

Equation (12) can be treated as the Schrödinger equation
for a particle moving in the presence of the effective
potential

Veff ¼ R00

R
(13)

and, in a cosmological model of the form (13), is written in
the form

h00ð	Þ þ
�
k2m � 2

�
4�m

ðm� 2Þ2
�

1

	2

�
hð	Þ ¼ 0 (14)

yielding

hmðkm	Þ ¼ ffiffiffiffi
	

p ½c1Hð1Þ
j�j ðkm	Þ þ c2H

ð2Þ
j�j ðkm	Þ� (15)

where, now, a prime denotes the derivative with respect to
	, c1, and c2 are arbitrary constants to be determined by
the initial conditions and km ¼ 2

m�2 k, so that km	 ¼ k�.

Finally, Hð1Þ
j�j and Hð2Þ

j�j are the Hankel functions of the first
and the second kind, of order [16]

j�j ¼ 1

2

��������m� 6

m� 2

��������: (16)

Therefore, different types of matter content (reflecting
different periods in the evolution of the Universe) admit
different Hankel functions (see, also, [17]).

KLEIDIS, PAPADOPOULOS, VERDAGUER, AND VLAHOS PHYSICAL REVIEW D 78, 024027 (2008)

024027-2



III. CONSTANCY OF THE EFFECTIVE
POTENTIAL

A. Implications on CGW’s propagation

A case of particular interest, involved in the time evo-
lution of a primordial GW, is when the effective potential
(13) is constant for every �, namely

R00

R
¼ 8�G

3
M (17)

where M is a non-negative constant of dimensions L�4. In
this case, Eq. (12) is written in the form

h00k ð�Þ þ!2hkð�Þ ¼ 0 (18)

where

!2 ¼ k2 � 8�G

3
M (19)

is the (constant) frequency of the wave. According to
Eq. (19), a critical value of the comoving wave number
arises, through the condition

!2 _ 0 , k _ kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G

3
M

s
: (20)

This critical value discriminates the primordial GWs in
modes with k > kc, which oscillate for every �,

hk>kcð�Þ � e{
ffiffiffiffiffiffiffiffiffiffi
k2�k2c

p
� (21)

and modes with k < kc, which grow exponentially for
every �,

hk<kcð�Þ � e
ffiffiffiffiffiffiffiffiffiffi
k2c�k2

p
� (22)

(the exponentially decaying solutions are neglected).

B. Cosmological models of constant effective potential

Now, the question arises on whether there exists a spa-
tially flat FRW cosmological model in which the effective

potential is constant. To answer this question, we setH ¼
R0
R . Accordingly, Veff is written in the form

R00

R
¼ H 0 þH 2: (23)

Upon consideration of Eqs. (4) and (23), Eq. (17) results in
the ordinary differential equation

�0 þ 4�
R0

R
¼ 2M

R0

R3
(24)

which admits the solution

�ð�Þ ¼ C

R4
þ M

R2
(25)

where C is an arbitrary integration constant of dimensions

L�4. In comparison to Eqs. (7) and (8), we distinguish the
following cases:
(i) M ¼ 0 andC ¼ 0: This case corresponds to vacuum

and flat space-time and it will not be considered
further.

(ii) M ¼ 0 and C � 0: This choice results in a
radiation-dominated universe

�ð�Þ ¼ C

R4
; Veff ¼ 0 (26)

where the critical wave number vanishes ðkc ¼ 0Þ.
(iii) M � 0 and C ¼ 0: Hence,

�ð�Þ ¼ M

R2
; Veff ¼ 8�G

3
M (27)

which corresponds to a string-dominated universe
[18]. It is worth noting that the constant M appear-
ing in the effective potential (17) is, in fact, the
initial mass density of the strings, M2 [cf. Eq. (7)].
A string-dominated universe does not seem likely
[19,20] and, therefore, this case is of no particular
interest.

(iv) Finally, if both C and M differ from zero, then, the
function �ð�Þ consists of two parts: One evolving as
R�4 and the other as R�2. By analogy to Eq. (8),
this type of matter content can be met in a cosmo-
logical model filled with relativistic particles (ra-
diation) and a fluid of cosmic strings, without
interacting with each other, as it should be the
case shortly after the dynamic friction between
them [4] became unimportant [5]. Therefore, in
this case,

� ¼ M4

R4
þM2

R2
; Veff ¼ 8�G

3
M2: (28)

Once again, the constantM, appearing in the effec-
tive potential, is associated to the initial amount of
strings in the mixture. It appears that, whenever the
effective potential acquires a nonzero constant
value, this value always involves the initial density
of a cosmic-string gas.

We conclude that, in the presence of cosmic strings the
effective potential is reduced to a nonvanishing constant
and, therefore, oscillation of the metric perturbations is
possible only if their comoving wave number is larger than
a critical value, depending on the mass density of the linear
defects

k > kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G

3
M2

s
: (29)

In other words, a cosmic-string network discriminates the
primordial GWs predicted by inflation into oscillating and
nonoscillating modes, something that should be reflected
in the power spectrum of the stochastic GW background.
We shall attempt to illustrate how, in a realistic setting.
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IV. A UNIVERSE WITH COSMIC STRINGS

The presence of cosmic strings in a unified gauge theory
is purely a question of topology. The simplest SO(10)
model, for example, predicts strings [21]. Many
superstring-inspired models also result in the formation
of linear topological defects [22,23]. Cosmic strings are
formed at a symmetry-breaking phase transition, within the
radiation-dominated epoch

Rð�Þ ¼ �

�cr
(30)

where �cr is the time at which the Universe acquires the
critical temperature below which the strings are formed
and we have normalized Rð�crÞ to unity.

In particular, after inflation (and reheating) the Universe
enters in an early-radiation epoch [24], during which the
background temperature drops monotonically ðT � R�1Þ.
For � � �cr, this cooling process results in the breaking of
a fundamental U(1) local gauge symmetry, leading to the
formation of linear defects (for a detailed analysis see [4]
and/or [5]).

By the time the cosmic strings are formed, they are
moving in a very dense environment and, hence, their
motion is heavily damped due to string-particle scattering
[25–28]. This friction becomes subdominant to expansion
damping at [25]

�� ¼ 1ffiffiffiffiffiffiffiffi
G�

p �cr (31)

where, � is the mass per unit length of the linear defect.
For � � ��, the motion of long cosmic strings can be
considered essentially independent of anything else in the
Universe and soon they acquire relativistic velocities.
Therefore, we may consider that, after �� the evolution
of the Universe is driven by a two-component fluid, con-
sisting of relativistic particles (dominant) and cosmic
strings (subdominant). Consequently, Eq. (28) holds and
�� marks the beginning of a radiation-plus-strings stage.
During this stage, the Friedmann Eq. (4) yields

Rð�Þ ¼
ffiffiffiffiffiffiffi
M4

M2

s
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G

3
M2

s
�: (32)

Nevertheless, the scale factor (32) can drive the Universe
expansion only for a short period of time after ��, since
cosmic strings should (at any time) be a small proportion of
the Universe energy content. This means that the equation
of state considered in (28) should have validity only for a
limited time period, otherwise cosmic strings would even-
tually dominate the overall energy density [18].

In fact, a radiation-plus-strings stage (if ever existed)
does not last very long. Numerical simulations [29–32]
suggest that, after the friction becomes unimportant, the
production of loops smaller than the Hubble radius gradu-
ally results in the scaling of the long-string network.

Accordingly, the linear defects form a self-similar configu-
ration, the density of which, eventually, behaves as R�4 [4].
In this way, apart from small statistical fluctuations, at
some time �sc > �� the Universe reenters in the (late)
radiation era

Rð�Þ ¼ Rsc

�

�sc
(33)

before it can become string dominated. The duration
ð�� ¼ �sc � ��Þ of the radiation-plus-strings stage is quite
uncertain, mostly due to the fact that numerical simulations
can be run for relatively limited times. For example, the
longest run of [32] suggests that �sc ’ 4:24�� (correspond-
ing to a factor of 18 in terms of the physical time), while
[31] raises this value to �sc ’ 6:48�� ðtsc ’ 42t�Þ.
In what follows, we explore the evolution of GW modes

with k < kc through the radiation-plus-strings stage.

V. CGWS IN THE PRESENCE OF COSMIC
STRINGS

A. Evolution of modes outside the horizon

CGWs are produced by quantum fluctuations during
inflation (e.g., see [33]). Some of them escape from the
visible Universe, once their reduced physical wavelength
½
ph ¼ 


2�Rð�Þ� becomes larger than the (constant) infla-

tionary horizon [‘H ¼ H�1
dS ,HdS being the Hubble parame-

ter of the de Sitter space]. Eventually, every CGW with
k � kmax ¼ HdSRdS is exiled from the Hubble sphere and
freezes out, acquiring the constant amplitude [34], [35]

�2
k ¼

�
hkð�Þ
Rð�Þ

�
2 ¼ 16

�

�
HdS

mPl

�
2
k�3 (34)

wheremPl ¼ G�1=2 is the Planck mass. After inflation, i.e.,
within the subsequent radiation epoch, analytic solutions
for �kð�Þ can be expressed in terms of the Bessel function
J1=2ðk�Þ

�kð�Þ ¼ 2c1�k

ffiffiffi
�

p
Rð�Þ J1=2ðk�Þ � �k

sink�

k�
(35)

[cf. Eq. (15) for c1 ¼ c2]. Accordingly, when k� � 1, the
perturbation’s amplitude evolves slowly and is approxi-
mately constant. Once k� � 1, the amplitude decays
away rapidly before entering in an oscillatory phase with
slowly decreasing amplitude, when k� 	 1. Physically,
this corresponds to a mode that is (almost) frozen beyond
the horizon, until its physical wavelength becomes com-
parable to the Hubble radius, at which point it enters in the
visible Universe (e.g., see [36]).
In other words, as the Universe expands, a fraction of the

modes that lie beyond the horizon reenters inside the
Hubble sphere. At the time of reentry their amplitude is
given by Eq. (34), while, afterwards, they begin oscillating.
The k dependence of their amplitude implies a scale-
invariant power spectrum [37].
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However, if the cosmological evolution includes a
radiation-plus-strings stage, then, during this stage, the
effective potential is a nonvanishing constant. In other
words, kc � 0 and the equation which governs the tempo-
ral evolution of the GW modes with k < kc does not admit
the solution (35), but Eq. (22). As a consequence, even if
they lie outside the horizon, these modes do not freeze out.

At the beginning of the radiation-plus-strings stage, the
GW modes that fit inside the visible Universe obey the
condition


phð��Þ � ‘Hð��Þ ) k � Hð��ÞRð��Þ ¼ 1

��
(36)

while, modes of k < k� ¼ ��1� lie outside the horizon. In
order to examine whether kc _ k� we need to determine
the initial mass density of the linear defects, since, by
definition,

M2 ¼ �strð��ÞR2ð��Þ: (37)

Let us consider a network of cosmic strings characterized
by a correlation length �ð�Þ. This may be defined as the
length such that the mass within a typical volume �3, is��
[4]. In this case, at � ¼ ��, the cosmic strings contribute to
the Universe matter content a mean density

�strð��Þ ¼ �

�2ð��Þ
¼ �2�

�

‘2Hð��Þ
(38)

where �� is a numerical constant of the order of unity,
representing the number of correlation lengths inside the
horizon at ��. Accordingly,

M2 ¼ �

�
��
��

�
2

(39)

and hence

kc ¼
ffiffiffiffiffiffiffi
8�

3

s ffiffiffiffiffiffiffiffi
G�

p ��
��

: (40)

For grand unified theory (GUT)-scale strings we have
ðG�Þ � 10�6 and �� ’ 7 (e.g., see [4]), so that kc ’ 2

10�2k� � k�. In other words, at the beginning of the
radiation-plus-strings stage, the GW modes of k < kc do
not fit inside the horizon.

On the other hand, for �� < � � �sc, the condition of
fitting inside the Hubble sphere is written in the form

k

kc
� coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G

3
M2

s
�: (41)

Since the hyperbolic cotangent on the right-hand side is
larger than unity for every �, Eq. (41) suggests that the GW
modes of comoving wave numbers k < kc remain outside
the horizon during the whole radiation-plus-strings stage.

Nevertheless, by virtue of Eq. (22), for �� < � � �sc
their amplitude continues to evolve as

�k<kcð� > ��Þ ¼ 4ffiffiffiffi
�

p
�
HdS

mPl

�
1

k3=2

�
Rð��Þ
Rð�Þ

�
e

ffiffiffiffiffiffiffiffiffiffi
k2c�k2

p
ð����Þ

(42)

[cf. Eqs. (22) and (34)]. This behavior ends at �sc, when the
scaling of the long-string network is completed and the
Universe reenters in the (late) radiation era. For � > �sc the
GW modes of k < kc are no longer influenced by the
radiation-plus-strings stage and therefore, just like the
rest of the metric perturbations outside the horizon, (re)
freeze out. As a consequence, their amplitude acquires the
constant value

�k<kc ¼
4ffiffiffiffi
�

p
�
HdS

mPl

�
1

k3=2

�
Rð��Þ
Rð�scÞ

�
e

ffiffiffiffiffiffiffiffiffiffi
k2c�k2

p
��: (43)

B. The distorted power spectrum

Within the late-radiation era these modes remain frozen
until the time �c. At that time the mode kc enters inside the
visible Universe, since its physical wavelength ð
cph � �cÞ
becomes smaller than the corresponding Hubble radius
ð‘H � �2cÞ. In accordance, for � > �c, GW modes of k <
kc also enter inside the Hubble sphere. After entering in-
side the horizon, the GW modes under consideration begin
oscillating, thus producing a part of the power spectrum we
observe today (or at some time in the future). However,
since they have experienced the influence of the radiation-
plus-strings (rps) stage, their amplitude is no longer given
by Eq. (34), but by Eq. (43), thus resulting in the distortion
of the GW power spectrum ðP2

k � k3�2
kÞ, from what it is

anticipated by pure-radiation (rad), at comoving wave
numbers k < kc. Namely,

Prps
k<kc

¼ Prad
k<kc

Rð��Þ
Rð�scÞ e

ffiffiffiffiffiffiffiffiffiffi
k2c�k2

p
�� (44)

which, upon consideration of Eq. (32), is written in the
form

Prps
k<kc

Prad
k<kc

¼ 2eð1þ
ffiffiffiffiffiffiffiffi
1�x2

p
Þkc��

½cothðkc��Þ þ 1�e2kc�� � ½cothðkc��Þ � 1�
(45)

where, we have set 0< k
kc
¼ x ¼ f

fc
< 1 and f is the fre-

quency attributed to the GW mode denoted by k.
According to Eq. (40), cothðkc��Þ ’ 5 and Eq. (45) result in

Prps
k<kc

Prad
k<kc

¼ eð1þ
ffiffiffiffiffiffiffiffi
1�x2

p
Þkc��

3e2kc�� � 2
: (46)

Clearly, for �� ¼ 0 (i.e., in the absence of the radiation-
plus-strings stage) Prps

k<kc
¼ Prad

k<kc
, while, for �� � 0 the

inflationary-GW power spectrum is no longer scale
invariant.
The spectral function �gw, appropriate to describe the

intensity of a stochastic GW background [38], is related to
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the power spectrum as �gw � P2
k (e.g., see [39]).

Therefore, Eq. (46) yields

�rps
gwðf < fcÞ

�rad
gwðf < fcÞ ¼ e2ð1þ

ffiffiffiffiffiffiffiffi
1�x2

p
Þkc��

ð3e2kc�� � 2Þ2 : (47)

Notice that, for every 0 � x � 1, we have �
rps
gw � �rad

gw ,

with the equality being valid only for �� ¼ 0. In other
words, the involvement of a radiation-plus-strings stage in
the evolution of the Universe reduces the stochastic GW
intensity to lower levels than those expected by pure ra-
diation. To give some numbers, we take into account the
numerical results of [31], as well as those of [32].
Accordingly, a reasonable estimate on the duration of
radiation-plus-strings stage would be �sc ¼ 5:5�� and
therefore, kc�� ’ 9
 10�2. In this case, Eq. (47) is writ-
ten in the form

�rps
gwðf < fcÞ

�rad
gwðf < fcÞ ’ 0:47
 e0:18

ffiffiffiffiffiffiffiffi
1�x2

p
(48)

from which it becomes evident that, for f < fc, the value
of �gw is no longer 8
 10�14, as it is predicted by pure

radiation [2], [9], but rather

�rps
gw ’ 0:5�rad

gw ’ 4
 10�14: (49)

Such a distortion reflects a change in the distribution of the
GWenergy density among the various frequency intervals,
probably due to the coupling between metric perturbations
and cosmic strings.

The question that arises now is, whether these results are
observable by the detectors currently available. To answer
this question, we should determine explicitly both fc (the
critical frequency) and tc (the physical time at which the
GWmodes of f < fc begin entering inside the horizon). In
what follows, c � 1.

During the early-radiation epoch, the physical time is
defined as

t ¼
Z

Rð�Þd� ) t ¼ �2

2�cr
: (50)

With the aid of Eqs. (31) and (50), Eq. (40) is written in the
form

kc ¼
ffiffiffiffiffiffiffi
2�

3

s �
G�

c2

�
��
ctcr

(51)

and therefore

fc ¼ 1ffiffiffiffiffiffiffi
6�

p
�
G�

c2

�
��
tcr

: (52)

The first of the GW modes under consideration which
enters inside the visible Universe is the one with the short-
est comoving wavelength ð
cÞ, i.e., the one with the largest
frequency ðfcÞ. In terms of the physical time, this process
begins at tc, at which 
cphðtcÞ � ‘HðtcÞ.

Within the late-radiation era, the physical time is defined
as

t ¼
Z

Rð�Þd� ) t ¼ Rsc

�2

2�sc
(53)

and therefore

tc *
3�

11�2�

�
G�

c2

��1
t� ¼ 3�

11�2�

�
G�

c2

��2
tcr (54)

where we have used Eq. (31) and the fact that, in an
expanding universe,

Rsc > Rðt�Þ ¼
�
G�

c2

��1=2
: (55)

Within the Hubble sphere the GW modes of 
 > 
c cor-
respond to CGWs of frequencies f < fc. Extrapolation of
this result into the present epoch ðtpr ’ 13:7
 109yÞ, sug-
gests that at frequencies

fpr < fprc ¼ fc

�
tc
trec

�
1=2

�
trec
tpr

�
2=3 )

fpr < fprc ¼ 1ffiffiffiffiffiffi
22

p
�
tcr
trec

�
1=2

�
trec
tpr

�
2=3 1

tcr

(56)

(where trec ¼ 1:2
 1013 sec is the recombination time)
the inflationary-GW power spectrum is distorted, departing
from scale invariance.
We note that fprc depends only on the (physical) time at

which the cosmic strings are formed. These linear defects
may have been formed at a GUT transition or, conceivably,
much later, at the electroweak transition or somewhere in
between [4]. For GUT-scale strings, tcr � 10�31 sec [5]
and therefore fprc ’ 1:5
 105 Hz. Clearly, this value is far
outside of the range where both the ground-based and the
space-based laser interferometers may operate. A GW of

FIG. 1. The stochastic GW background from inflation at fre-
quencies within the radiation era, f * 10�16 Hz (dashed line),
under the influence of a radiation-plus-strings stage produced by
GUT-scale cosmic strings (solid line).
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this frequency could be detected only by a system of
coupled superconducting microwave cavities [40,41].

However, one should have in mind that, this is only the
upper bound of the distorted GW power spectrum. In fact,
if cosmic strings contribute to the evolution of the
Universe, the GW power spectrum will decline from
what it is anticipated by pure radiation at every present-
time frequency in the range 10�16 Hz< f & fprc (see
Fig. 1). The lower bound of this range arises from the
GWs that began entering inside the horizon after the
Universe has become matter dominated [39].

On the other hand, for electroweak-scale strings, tcr �
10�11 sec [5] and hence, fprc ’ 1:5
 10�5 Hz, while, for
cosmic strings created at some time in between the GUT-
and the electroweak-symmetry breaking (e.g., tcr �
10�21 sec ), we obtain fprc ’ 1:5 Hz. Therefore, a potential
detection of CGWs, among other things, would give us
valuable information on the epoch (and therefore on the
physical mechanism, as well) at which the cosmic strings
were formed.

VI. CONCLUSIONS

The equation which governs the temporal evolution of a
CGW in a Friedmann universe can be treated as the
Schrödinger equation for a particle moving in the presence
of the effective potential Veff ¼ R00=R. In the present ar-
ticle we show that, if there is a period where the effective
potential is constant, this would lead to a critical value ðkcÞ
in the comoving wave number of the metric fluctuations,
discriminating them into oscillating ðk > kcÞ and nonoscil-
lating ðk < kcÞ modes. As a consequence, when the non-
oscillatory modes lie outside the horizon do not freeze out,
something that should be reflected in the inflationary-GW
power spectrum.

This property is met in a radiation model contaminated
by a fraction of cosmic strings. Therefore, if the cosmo-

logical evolution includes a radiation-plus-strings stage,
some of the long-wavelength GW modes (although being
outside the Hubble sphere) continue to evolve. However,
this stage (if ever existed) does not last very long, since, the
cosmological evolution gradually results in the scaling of
the cosmic-string network and, after some time ð��Þ, the
Universe enters in the late-radiation era.
In a radiation-dominated universe the metric perturba-

tions of k < kc can enter the horizon, which now expands
faster than their physical wavelength. However, the evolu-
tion of the nonoscillatory GW modes during �� (while
they were outside the horizon) has modified their ampli-
tude and, therefore, oscillation of these modes within the
Hubble sphere, results in the distortion of the scale-
invariant GW power spectrum at present-time frequencies
in the range 10�16 Hz< f & 105 Hz.
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Note added in proof.—A few days after this article was

accepted for publication, a recent paper [42] dealing with
the scaling of a cosmic-string network in an updated nu-
merical fashion came to our attention. According to it, the
duration of a potential radiation-plus-strings stage in terms
of the conformal time (the dynamical range—as it is
referred to) is: �sc ¼ 17�� (corresponding to a factor of
300 in the physical time). Adoption of this result would
lead to a more evident distortion of the inflationary GW
spectrum, modifying Eq. (49) to �rps

gw ’ 0:2�rad
gw ’ 1:6


10�14. The authors would like to thankMairi Sakellariadou
for pointing this out.
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